Tetrahedron Letters 41 (2000) 3705-3708

A versatile synthesis of 4-aryl tetrahydropyridines via palladium mediated Suzuki cross-coupling with cyclic vinyl boronates

Paul R. Eastwood *

Discovery Chemistry, Aventis Pharma, Rainham Road South, Dagenham, Essex RM10 7XS, UK Received 23 February 2000; accepted 13 March 2000

Abstract

A simple preparation of cyclic vinyl boronates derived from the vinyl triflates of *N*-protected tetrahydropyridines is described. Suzuki coupling of the boronates with aryl bromides, iodides and triflates proceeds in good yield to give 4-aryl tetrahydropyridines. © 2000 Elsevier Science Ltd. All rights reserved.

Keywords: Suzuki reactions; piperidines; palladium.

4-Arylpiperidine-derived skeletons are present in a diverse array of biologically active entities and therapeutic agents¹ and as such represent important synthetic targets. Of the literature methods used to synthesise compounds of this type,² among the most useful are those which utilise a palladium-mediated cross-coupling to introduce the aromatic ring (Scheme 1). Examples of efficient coupling partners used include the combinations vinyl tin–aryl bromide³ and vinyl triflate–aryl boronate.⁴ The former method, although wide in scope due to the availability of aryl bromides, involves the use and often difficult removal of toxic tin compounds; the latter method is restricted as the commercial availability of aryl boronates is somewhat limited.

Scheme 1.

As part of ongoing medicinal chemistry programs, we were interested in a convenient synthesis of 4-aryl piperidines and 4-aryl tetrahydropyridines. In particular, we required a simple method of varying the aryl moiety in order to prepare scaffolds for chemical libraries. Herein we describe a method which

0040-4039/00/\$ - see front matter © 2000 Elsevier Science Ltd. All rights reserved. PII: S0040-4039(00)00447-0

^{*} Corresponding author. Fax: +44(0)1819192029; e-mail: paul.eastwood@aventis.com (P. R. Eastwood)

combines the advantages of both of the above methods by the coupling of vinyl boronates with the more abundant aryl halides or triflates (Scheme 2).

Scheme 2

The desired *N*-protected cyclic boronates were synthesised in high yield from the readily available vinyl triflates⁵ via a palladium-mediated cross-coupling with bis(pinacolato)diboron (Scheme 3).⁶ The optimal conditions for this reaction were found by running a series of parallel reactions using a 'carousel reaction station'TM. An alternative synthesis of similar compounds has been described via a ring closing metathesis (RCM) reaction.⁸

Scheme 3.

Palladium-mediated reaction of **1** and **2** with a variety of aromatic substrates (PdCl₂dppf, K₂CO₃, DMF, 80°C) led to the desired cross-coupled products in good to high yield (Table 1). A range of functionality was tolerated including electron-withdrawing (entries 6–8) and electron-donating groups (entries 4, 5, 10 and 11), heterocycles (entry 9), esters (entry 6) and *o*-substituted compounds (entry 3). Although reaction occurred at room temperature with iodobenzene (entry 2), a higher yield was obtained under the standard conditions at 80°C. The use of an aryl triflate as a substrate (entry 12) also gave a high yield of the desired product. Similar yields are obtained with **1** and **2** (entries 10 and 11). The only case where any significant by-product was observed was in the reaction of 4-cyanobromobenzene (entry 7) which also produced an olefinic isomer.

The desired piperidine and tetrahydropyridine templates ready for further functionalisation on nitrogen were easily accessed via standard deprotection methods¹⁰ as illustrated in Scheme 4.

Scheme 4.

In summary, we have described a simple method for the synthesis of cyclic vinyl boronates and their use has been illustrated by the formation of 4-aryltetrahydropyridine and piperidine intermediates.

Product(s) Yield(%)a Entry Boronate Substrate 80 1 2 N-CBz 90 2 2 $(55)^{b}$ 3 2 74 2 87 4 AcHN 5 80 2 6 2 75 N-CBz 60 7 2 29 92° 8 2 9 2 N-CBz 85 73 10 2 -CBz 11 1 N-Boc 65 12 2 N-CBz 87

Table 1
Palladium-mediated cross-coupling of vinyl boronates 1 and 2

References

- 1. (a) Roth, H. J.; Kleeman, A. *Pharmaceutical Chemistry*; John Wiley & Sons: New York, 1988. (b) Gogfraid, T.; Miller, R.; Wibo, M. *Pharmacol. Rev.* **1986**, *38*, 321.
- 2. For recent reviews, see: (a) Bailey, P. D.; Millwood, P. A.; Smith, P. D. *Chem. Commun.* **1998**, 633. (b) Nadin, A. *Contemp. Org. Synth.* **1997**, *4*, 387. (c) Sardina, F. J.; Rapoport, H. *Chem. Rev.* **1996**, *96*, 1825.
- 3. See, for example: Bono, F.; Fournier, J.; Herbert, J.-M.; Lamarche, I.; Umberto, G. PCT Patent Appl. WO 9853821.
- 4. Wustrow, D. J.; Wise, L. D. Synthesis 1991, 11, 993.
- 5. Prepared in high yield from the commercially available ketones (LiHDMS, THF, $-78^{\circ}C$ then PhNTf $_2$ $-78^{\circ}C$ to $0^{\circ}C$).
- 6. Representative procedure: To a flask were added bis(pinacolato)diboron (5.75 mmol), KOAc (15.7 mmol), PdCl₂dppf (3 mol%), dppf (3 mol%) and the contents flushed with nitrogen. A solution of the triflate (5.2 mmol) in 1,4-dioxane (30 mL) was added and the mixture was stirred at 80°C overnight. After work-up, flash chromatography (SiO₂, Pentane/EtOAc)

^a Isolated yields.

^b Reaction carried out at room temperature for 24h.

^c Reaction performed on 6.5 mmol of Boronate.

- gave the boronates as white solids. Compound 1: ^{1}H NMR (CDCl₃) 1.25 (s, 12H), 1.45 (s, 9H), 2.20 (m, 2H), 3.40 (m, 2H), 3.90 (m, 2H), 6.45 (br s, 1H); MS (MH⁺); mp 99–101°C. Compound 2: ^{1}H NMR (CDCl₃) 1.25 (s, 12H), 2.20 (m, 2H), 3.50 (m, 2H), 4.00 (m, 2H), 5.10 (s, 2H), 6.45 (br d, 1H), 7.30–7.40 (m, 5H); MS (MH⁺); mp 88–90°C.
- 7. A single piece of equipment capable of heating and stirring 12 independent reactions under nitrogen. Available from Radleys, Shire Hill, Saffron Walden, Essex, CB11 3AZ, UK, http://www.radleys.co.uk
- 8. Renaud, J.; Ouellet S. G. J. Am. Chem. Soc. 1998, 120, 7995.
- 9. Representative procedure: To a nitrogen flushed flask containing the boronate (0.75 mmol), K₂CO₃ (2.25 mmol) and PdCl₂dppf (6 mol%) was added a solution of the bromide (0.79 mmol) in DMF (5 mL). The mixture was heated to 80°C and stirred under N₂ overnight when TLC indicated completion of the reaction. Work-up, followed by flash chromatography (SiO₂, Pentane/EtOAc) gave the coupled products.
- 10. Greene, T. W.; Wuts, P. G. M. In Protective Groups in Organic Synthesis, 2nd ed.; Wiley: New York, 1991.